
flake8-aaa Documentation
Release 0.10.1

James Cooke

Jun 20, 2020

Contents

1 Overview 1
1.1 Compatibility list . 1
1.2 Test discovery and analysis . 3
1.3 Rules and error codes . 4
1.4 Controlling Flake8-AAA . 6
1.5 Release checklist . 8

i

ii

CHAPTER 1

Overview

Flake8-AAA is a Flake8 plugin that checks Python tests follow the Arrange-Act-Assert pattern.

Please see the README on GitHub for a general introduction to this project and AAA.

Continue here for more detail about using Flake8-AAA.

1.1 Compatibility list

Flake8-AAA is compatible with the following software. Future versions will maintain this compatibility as closely as
possible.

1.1.1 Python

Works with Python 3.

Flake8-AAA is fully compatible and tested against the latest versions of Python 3. Currently that’s 3.6, 3.7 and 3.8.

The following versions of Python are no longer supported:

Python 3.5

Python 3.5 was supported up to v0.7.2

• v0.7.2 on PyPI

• v0.7.2 Documentation

• Github v0.7.2 tag

1

https://github.com/jamescooke/flake8-aaa
https://pypi.org/project/flake8-aaa/0.7.2/
https://flake8-aaa.readthedocs.io/en/v0.7.2/
https://github.com/jamescooke/flake8-aaa/releases/tag/v0.7.2

flake8-aaa Documentation, Release 0.10.1

Python 2

Python 2 was supported up to v0.4.0

• v0.4.0 on PyPI

• v0.4.0 Documentation

• Github v0.4.0 tag

1.1.2 Flake8

Works with Flake8 version 3 and later.

We use the newer plugin system implemented in Flake8 v3. This dependency is not specified in setup.py because
users may only want to use the command line interface.

Check that Flake8-AAA was installed correctly by asking flake8 for its version signature:

$ flake8 --version
3.8.2 (aaa: 0.10.0, mccabe: 0.6.1, pycodestyle: 2.6.0, pyflakes: 2.2.0) CPython 3.6.
→˓10 on Linux

The aaa: 0.10.0 part of that output tells you Flake8 found this plugin.

1.1.3 Yapf

Yapf is used to format Flake8-AAA code and tests. It is the primary formatter focused on for compatibility.

1.1.4 Black

Flake8-AAA is compatible with tests formatted with Black.

The coding style used by Black can be viewed as a strict subset of PEP8.

The AAA pattern is PEP8 compatible so it makes sense that Flake8-AAA should work with PEP8 compatible format-
ters.

This compatibility is pinned by the test examples in the examples/good/black directory. These tests are formatted with
the latest version of Black in default mode. They are then checked to pass Flake8-AAA’s linting.

1.1.5 Pytest

Pytest is fully supported.

To pin this compatibility we use the latest version of Pytest in the Flake8-AAA test suite and lint that test suite with
Flake8-AAA (aka. dog fooding).

1.1.6 Unittest

Python unittest style is supported.

To pin this compatibility we include unittest-style tests in the examples/good directory -

2 Chapter 1. Overview

https://pypi.org/project/flake8-aaa/0.4.0/
https://flake8-aaa.readthedocs.io/en/v0.4.0/
https://github.com/jamescooke/flake8-aaa/releases/tag/v0.4.0
https://github.com/jamescooke/flake8-aaa/tree/master/examples/good/black
https://github.com/jamescooke/flake8-aaa/tree/master/examples/good

flake8-aaa Documentation, Release 0.10.1

1.2 Test discovery and analysis

When running as a Flake8 plugin, Flake8-AAA filters the Python code passed to it by Flake8. It finds code that looks
like test code and then checks that code matches the AAA pattern. When all checks pass, then no error is raised.

1.2.1 Filtering

First, the filename is checked. It must either test.py, tests.py or start with test_. For those files that match,
every function that has a name that starts with “test” is checked. This includes class methods.

Test functions and methods that contain only comments, docstrings or pass are skipped.

The aim of this process is to mirror Pytest’s default collection strategy as closely as possible. It also aims to work with
popular testing tutorials such as Django’s Writing your first Django app which states:

Put the following in the tests.py file in the polls application

If you find that Flake8-AAA is giving false positives (you have checks that you expected to fail, but they did not), then
you should check that the plugin did not ignore or skip those tests which you expected to fail.

Note: Flake8-AAA does not check doctests.

1.2.2 Processing

For each test found, Flake8-AAA runs the following processes, most of which can be found in Function.
check_all().

Check for no-op

Skip test if it is considered “no-op” (pass, docstring, etc).

Mark blank lines

Mark all lines in the test that have no characters and are not part of a string. For example, the following snipped
contains only one blank line (line 3 - in the middle of the list), the second at line 9 is part of a string and therefore not
counted:

assert result == [
1,

2,
]
Check on output
assert str(result) == """[
1,

2,
]"""

1.2. Test discovery and analysis 3

https://docs.djangoproject.com/en/3.0/intro/tutorial05/#create-a-test-to-expose-the-bug

flake8-aaa Documentation, Release 0.10.1

Find the Act block

There are four recognised types of Act block:

marked_act Action is marked with Marked with # act comment:

do_thing() # act

pytest_raises Action is wrapped in pytest.raises context manager:

with pytest.raises(ValueError):
do_thing()

result_assignment result = action:

result = do_thing()

unittest_raises Action is wrapped in unittest’s assertRaises context manager:

with self.assertRaises(ValueError):
do_thing()

Flake8-AAA searches each test function for lines that look like Act blocks. It will raise an error when a function does
not have exactly 1 Act block.

Build Arrange and Assert blocks

The Arrange block is created with all nodes in the test function that have a line number before the start of the Act
block.

The Assert block is created with all nodes in the test function that have a line number after the end of the Act block.

Line-wise analysis

Finally a line-by-line analysis of the test function is carried out to ensure that:

• No blocks contain extra blank lines.

• There is a single blank line above and below the Act block.

1.3 Rules and error codes

The rules applied by Flake8-AAA are from the Arrange Act Assert pattern for Python developers.

Note: The rules applied by Flake8-AAA are only a subset of the rules and guidelines of the Arrange Act Assert
pattern itself. Please see the published guidelines for the pattern and read these rules in the context of the definition
there.

Note: Flake8-AAA works best with the following Flake8 rules enabled:

• E303 “too many blank lines”

• E702 “Multiple statements on one line”

4 Chapter 1. Overview

https://jamescooke.info/arrange-act-assert-pattern-for-python-developers.html
https://jamescooke.info/arrange-act-assert-pattern-for-python-developers.html

flake8-aaa Documentation, Release 0.10.1

1.3.1 AAA01: no Act block found in test

An Act block is usually a line like result = or a check that an exception is raised. Flake8-AAA could not find an
Act block in the indicated test function.

Resolution

Add an Act block to the test or mark a line that should be considered the action.

Even if the result of a test action is None, assign that result and pin it with a test:

result = action()

assert result is None

If you can not assign a result, then mark the end of the line considered the Act block with # act (case insensitive):

data['new_key'] = 1 # act

Code blocks wrapped in pytest.raises() and unittest.assertRaises() context managers are recog-
nised as Act blocks.

1.3.2 AAA02: multiple Act blocks found in test

There must be one and only one Act block in every test but Flake8-AAA found more than one potential Act block.
This error is usually triggered when a test contains more than one result = statement or more than one line marked
act. Multiple Act blocks create ambiguity and raise this error code.

Resolution

Split the failing test into multiple tests. Where there is complicated or reused set-up code then apply the DRY principle
and extract the reused code into one or more fixtures.

1.3.3 AAA03: expected 1 blank line before Act block, found none

For tests that have an Arrange block, there must be a blank line between the Arrange and Act blocks, but Flake8-AAA
could not find one.

This blank line creates separation between the arrangement and the action and makes the Act block easy to spot.

This rule works best with pycodestyle’s E303 rule enabled because it ensures that there are not multiple blank lines
between the blocks.

Resolution

Add a blank line before the Act block.

1.3. Rules and error codes 5

https://pypi.org/project/pycodestyle/

flake8-aaa Documentation, Release 0.10.1

1.3.4 AAA04: expected 1 blank line before Assert block, found none

For tests that have an Assert block, there must be a blank line between the Act and Assert blocks, but Flake8-AAA
could not find one.

This blank line creates separation between the action and the assertions and makes the Act block easy to spot.

As with rule AAA03, this rule works best with E303 enabled.

Resolution

Add a blank line before the Assert block.

1.3.5 AAA05: blank line in block

The only blank lines in the test must be around the Act block making it easy to spot. Flake8-AAA found additional
blank lines which break up the block’s layout.

Resolution

Remove the blank line.

1.3.6 AAA99: collision when marking this line as NEW_CODE, was already
OLD_CODE

This is an error code that is raised when Flake8 tries to mark a single line as occupied by two different types of block.
It should never happen. The values for NEW_CODE and OLD_CODE are from the list of Line markers.

Resolution

Please open a new issue containing the output for the failing test as generated by the Command line tool.

You could hack around with your test to see if you can get it to work while waiting for someone to reply to your issue.
If you’re able to adjust the test to get it to work, that updated test would also be helpful for debugging.

1.4 Controlling Flake8-AAA

1.4.1 In code

Flake8-AAA can be controlled using some special comments in your test code.

Explicitly marking blocks

One can set the act block explicitly using the # act comment. This is necessary when there is no assignment possible.

6 Chapter 1. Overview

https://github.com/jamescooke/flake8-aaa/issues/new

flake8-aaa Documentation, Release 0.10.1

Disabling Flake8-AAA selectively

When invoked via Flake8, Flake8 will filter any errors raised when lines are marked with the # noqa syntax. You
can turn off all errors from Flake8-AAA by marking a line with # noqa: AAA and other Flake8 errors will still be
returned.

If you just want to ignore a particular error, then you can use the more specific code and indicate the exact error to be
ignored. For example, to ignore the check for a space before the Act block, we can mark the Act block with # noqa:
AAA03:

def test():
x = 1
result = x + 1 # noqa: AAA03

assert result == 2

1.4.2 Command line

Flake8-AAA has a simple command line interface to assist with development and debugging. Its goal is to show the
state of analysed test functions, which lines are considered to be parts of which blocks and any errors that have been
found.

Invocation, output and return value

With Flake8-AAA installed, it can be called as a Python module:

$ python -m flake8_aaa [test_file]

Where [test_file] is the path to a file to be checked.

The return value of the execution is the number of errors found in the file, for example:

$ python -m flake8_aaa test_example.py
------+--
1 DEF|def test():
2 ARR| x = 1
3 ARR| y = 1

^ AAA03 expected 1 blank line before Act block, found none
4 ACT| result = x + y
5 BL |
6 ASS| assert result == 2

------+--
1 | ERROR

======+==
FAILED with 1 ERROR

$ echo "$?"
1

And once the error above is fixed, the return value returns to zero:

$ python -m flake8_aaa test_example.py
------+--
1 DEF|def test():
2 ARR| x = 1
3 ARR| y = 1

(continues on next page)

1.4. Controlling Flake8-AAA 7

flake8-aaa Documentation, Release 0.10.1

(continued from previous page)

4 BL |
5 ACT| result = x + y
6 BL |
7 ASS| assert result == 2

------+--
0 | ERRORS

======+==
PASSED!

$ echo "$?"
0

Only one file can be passed to the command line at a time. So to test all files in a test suite, find should be used:

$ find tests -name '*.py' | xargs -n 1 python -m flake8_aaa

noqa and command line

The # noqa comment marker works slightly differently when Flake8-AAA is called on the command line rather
than invoked through flake8. When called on the command line, to skip linting a test function, mark the function
definition with # noqa on the same line as the def.

For example:

def test_to_be_ignored(# noqa
arg_1,
arg_2,

):
...

Line markers

Each test found in the passed file is displayed. Each line is annotated with its line number in the file and a marker to
show how Flake8-AAA classified that line. Line markers are as follows:

ACT Line is part of the Act Block.

ARR Line is part of an Arrange Block.

ASS Line is part of the Assert Block.

BL Line is considered a blank line for layout purposes.

DEF Test function definition.

??? Unprocessed line. Flake8-AAA has not categorised this line.

1.5 Release checklist

The following tasks need to be completed for each release of Flake8-AAA. They are mainly for the maintainer’s use.

1.5.1 Versioning

Given a new version called x.y.z:

8 Chapter 1. Overview

flake8-aaa Documentation, Release 0.10.1

• Create a branch for the new release. Usually called something like bump-vx.y.z.

• Run ./bump_version.sh [x.y.z].

• Commit changes and push bump-vx.y.z branch for testing.

1.5.2 Documentation

Now is a good time to build and check the documentation locally:

$ make doc
$ firefox docs/_build/html/index.html

Ensure that command line output examples are up to date. They can be updated using the output of the cmd and
cmdbad tox environments.

1.5.3 Merge

• When branch bump-vx.y.z is green, then merge it to master.

• Update master locally and ensure that you remain on master for the rest of the process.

1.5.4 Test PyPI

• Test that a build can be shipped to test PyPI with make testpypi.

• After successful push, check the TestPyPI page.

1.5.5 Tag and push

• Tag the repo with make tag. Add a short message describing the key feature of this release.

• Make the new tag public with git push origin --tags.

• Build and push to PyPI with make pypi.

• After successful push, check the PyPI page.

1.5.6 Post release checks

• Visit the CHANGELOG and ensure that the new release’s comparison link works with the new tag.

• Check the RTD builds to ensure that the latest documentation version has been picked up and that the stable
docs are pointed at it.

A new docs release will not have been created for the new tag as per this issue. Click “Build Version:” on the
builds page for the new tag to be picked up.

1.5. Release checklist 9

https://test.pypi.org/project/flake8-aaa/
https://pypi.org/project/flake8-aaa/
https://github.com/jamescooke/flake8-aaa/blob/master/CHANGELOG.rst
https://readthedocs.org/projects/flake8-aaa/builds/
https://github.com/rtfd/readthedocs.org/issues/3508

	Overview
	Compatibility list
	Test discovery and analysis
	Rules and error codes
	Controlling Flake8-AAA
	Release checklist

