

Flake8-AAA documentation

Overview

Flake8-AAA is a Flake8 plugin that checks Python tests follow the
Arrange-Act-Assert pattern.

Please see the README on GitHub [https://github.com/jamescooke/flake8-aaa]
for a general introduction to this project and AAA.

Continue here for more detail about using Flake8-AAA.

Contents

	Compatibility list
	Python

	Flake8

	Yapf

	Black

	Pytest

	Unittest

	Test discovery and analysis
	Filtering

	Processing

	Rules and error codes
	AAA01: no Act block found in test

	AAA02: multiple Act blocks found in test

	AAA03: expected 1 blank line before Act block, found none

	AAA04: expected 1 blank line before Assert block, found none

	AAA05: blank line in block

	AAA06: comment in Act block

	AAA99: collision when marking this line as NEW_CODE, was already OLD_CODE

	Controlling Flake8-AAA
	In code

	Command line

	Release checklist
	Versioning

	Documentation

	Merge

	Test PyPI

	Tag and push

	Post release checks

Compatibility list

Flake8-AAA is compatible with the following software. Future versions will
maintain this compatibility as closely as possible.

Python

Works with Python 3.

Flake8-AAA is fully compatible and tested against the latest versions of Python
3. Currently that’s 3.6, 3.7 and 3.8.

The following versions of Python are no longer supported:

Python 3.5

Python 3.5 was supported up to v0.7.2

	v0.7.2 on PyPI [https://pypi.org/project/flake8-aaa/0.7.2/]

	v0.7.2 Documentation [https://flake8-aaa.readthedocs.io/en/v0.7.2/]

	Github v0.7.2 tag [https://github.com/jamescooke/flake8-aaa/releases/tag/v0.7.2]

Python 2

Python 2 was supported up to v0.4.0

	v0.4.0 on PyPI [https://pypi.org/project/flake8-aaa/0.4.0/]

	v0.4.0 Documentation [https://flake8-aaa.readthedocs.io/en/v0.4.0/]

	Github v0.4.0 tag [https://github.com/jamescooke/flake8-aaa/releases/tag/v0.4.0]

Flake8

Works with Flake8 version 3 and later.

We use the newer plugin system implemented in Flake8 v3. This dependency is not
specified in setup.py because users may only want to use the command line
interface.

Check that Flake8-AAA was installed correctly by asking flake8 for its
version signature:

$ flake8 --version
3.8.2 (aaa: 0.10.0, mccabe: 0.6.1, pycodestyle: 2.6.0, pyflakes: 2.2.0) CPython 3.6.10 on Linux

The aaa: 0.10.0 part of that output tells you Flake8 found this plugin.

Yapf

Yapf is used to format Flake8-AAA code and tests. It is the primary formatter
focused on for compatibility.

Black

Flake8-AAA is compatible with tests formatted with Black.

The coding style used by Black can be viewed as a strict subset of PEP8.

The AAA pattern is PEP8 compatible so it makes sense that Flake8-AAA should
work with PEP8 compatible formatters.

This compatibility is pinned by the test examples in the examples/good/black
directory [https://github.com/jamescooke/flake8-aaa/tree/master/examples/good/black].
These tests are formatted with the latest version of Black in default mode.
They are then checked to pass Flake8-AAA’s linting.

Pytest

Pytest is fully supported.

To pin this compatibility we use the latest version of Pytest in the
Flake8-AAA test suite and lint that test suite with Flake8-AAA (aka. dog
fooding).

Unittest

Python unittest style is supported.

To pin this compatibility we include unittest-style tests in the examples/good
directory [https://github.com/jamescooke/flake8-aaa/tree/master/examples/good] -

Test discovery and analysis

When running as a Flake8 plugin, Flake8-AAA filters the Python code passed to
it by Flake8. It finds code that looks like test code and then checks that code
matches the AAA pattern. When all checks pass, then no error is raised.

Filtering

First, the filename is checked. It must either test.py, tests.py or
start with test_. For those files that match, every function that has a
name that starts with “test” is checked. This includes class methods.

Test functions and methods that contain only comments, docstrings or pass
are skipped.

The aim of this process is to mirror Pytest’s default collection strategy as
closely as possible. It also aims to work with popular testing tutorials such
as Django’s Writing your first Django app [https://docs.djangoproject.com/en/3.0/intro/tutorial05/#create-a-test-to-expose-the-bug]
which states:

Put the following in the tests.py file in the polls application

If you find that Flake8-AAA is giving false positives (you have checks that
you expected to fail, but they did not), then you should check that the plugin
did not ignore or skip those tests which you expected to fail.

Note

Flake8-AAA does not check doctests.

Processing

For each test found, Flake8-AAA runs the following processes, most of which can
be found in Function.check_all().

Check for no-op

Skip test if it is considered “no-op” (pass, docstring, etc).

Mark blank lines

Mark all lines in the test that have no characters and are not part of a
string. For example, the following snipped contains only one blank line (line 3
- in the middle of the list), the second at line 9 is part of a string and
therefore not counted:

assert result == [
 1,

 2,
]
Check on output
assert str(result) == """[
1,

2,
]"""

Mark comments

All lines that are # comment lines are marked.

This line is considered a comment line

result = item.act() # But not this line

This process relies on analysing the tokens that make up the test.

Find the Act block

There are four recognised types of Act block:

	marked_act

	Action is marked with Marked with # act comment:

do_thing() # act

	pytest_raises

	Action is wrapped in pytest.raises context manager:

with pytest.raises(ValueError):
 do_thing()

	result_assignment

	result = action:

result = do_thing()

	unittest_raises

	Action is wrapped in unittest’s assertRaises context manager:

with self.assertRaises(ValueError):
 do_thing()

Flake8-AAA searches each test function for lines that look like Act blocks. It
will raise an error when a function does not have exactly 1 Act block.

Build Arrange and Assert blocks

The Arrange block is created with all nodes in the test function that have a
line number before the start of the Act block.

The Assert block is created with all nodes in the test function that have a
line number after the end of the Act block.

Line-wise analysis

Finally a line-by-line analysis of the test function is carried out to ensure
that:

	No blocks contain extra blank lines.

	There is a single blank line above and below the Act block.

Rules and error codes

The rules applied by Flake8-AAA are from the Arrange Act Assert pattern
for Python developers [https://jamescooke.info/arrange-act-assert-pattern-for-python-developers.html].

Note

The rules applied by Flake8-AAA are only a subset of the rules and
guidelines of the Arrange Act Assert pattern itself. Please see the
published guidelines for the pattern [https://jamescooke.info/arrange-act-assert-pattern-for-python-developers.html]
and read these rules in the context of the definition there.

Note

Flake8-AAA works best with the following Flake8 rules enabled:

	E303 “too many blank lines”

	E702 “Multiple statements on one line”

AAA01: no Act block found in test

An Act block is usually a line like result = or a check that an exception
is raised. Flake8-AAA could not find an Act block in the indicated test
function.

Resolution

Add an Act block to the test or mark a line that should be considered the
action.

Even if the result of a test action is None, assign that result and
pin it with a test:

result = action()

assert result is None

If you can not assign a result, then mark the end of the line considered
the Act block with # act (case insensitive):

data['new_key'] = 1 # act

Code blocks wrapped in pytest.raises() and unittest.assertRaises()
context managers are recognised as Act blocks.

AAA02: multiple Act blocks found in test

There must be one and only one Act block in every test but Flake8-AAA found
more than one potential Act block. This error is usually triggered when a test
contains more than one result = statement or more than one line marked #
act. Multiple Act blocks create ambiguity and raise this error code.

Resolution

Split the failing test into multiple tests. Where there is complicated or
reused set-up code then apply the DRY principle and extract the reused code
into one or more fixtures.

AAA03: expected 1 blank line before Act block, found none

For tests that have an Arrange block, there must be a blank line between the
Arrange and Act blocks, but Flake8-AAA could not find one.

This blank line creates separation between the arrangement and the action and
makes the Act block easy to spot.

This rule works best with pycodestyle [https://pypi.org/project/pycodestyle/]’s E303 rule enabled because it
ensures that there are not multiple blank lines between the blocks.

Resolution

Add a blank line before the Act block.

AAA04: expected 1 blank line before Assert block, found none

For tests that have an Assert block, there must be a blank line between the Act
and Assert blocks, but Flake8-AAA could not find one.

This blank line creates separation between the action and the assertions and
makes the Act block easy to spot.

As with rule AAA03, this rule works best with E303 enabled.

Resolution

Add a blank line before the Assert block.

AAA05: blank line in block

The only blank lines in the test must be around the Act block making it easy to
spot. Flake8-AAA found additional blank lines which break up the block’s
layout.

Resolution

Remove the blank line.

AAA06: comment in Act block

Problematic code

def test() -> None:
 shopping = ['apples', 'bananas', 'cabbages']

 # Reverse shopping list operates in place
 shopping.reverse() # act

 assert shopping == ['cabbages', 'bananas', 'apples']

Correct code

def test() -> None:
 """
 Reverse shopping list operates in place
 """
 shopping = ['apples', 'bananas', 'cabbages']

 shopping.reverse() # act

 assert shopping == ['cabbages', 'bananas', 'apples']

Rationale

The Act block carries out a single action on an object. It is the focus of each
test. Therefore any comments on this single action are really comments on the
test itself and so should be moved to the test docstring.

By placing these important comments in the docstring we can:

	Make it easier to keep the Act block simple.

	Help to distinguish the Act block from the rest of the test.

	Improve the documentation of tests because any important comments and notes
are lifted to the top of the test.

Exceptions

Inline comments used to pass information to linters are OK:

	Marking the Act block:

shopping.reverse() # act

	Marking lines in the action for linting reasons:

result = shopping.reverse() # type: ignore

AAA99: collision when marking this line as NEW_CODE, was already OLD_CODE

This is an error code that is raised when Flake8 tries to mark a single line as
occupied by two different types of block. It should never happen. The values
for NEW_CODE and OLD_CODE are from the list of Line markers.

Resolution

Please open a new issue [https://github.com/jamescooke/flake8-aaa/issues/new] containing the output
for the failing test as generated by the Command line tool.

You could hack around with your test to see if you can get it to work while
waiting for someone to reply to your issue. If you’re able to adjust the test
to get it to work, that updated test would also be helpful for debugging.

Controlling Flake8-AAA

In code

Flake8-AAA can be controlled using some special comments in your test code.

Explicitly marking blocks

One can set the act block explicitly using the # act comment. This is
necessary when there is no assignment possible.

Disabling Flake8-AAA selectively

When invoked via Flake8, Flake8 will filter any errors raised when lines are
marked with the # noqa syntax. You can turn off all errors from Flake8-AAA
by marking a line with # noqa: AAA and other Flake8 errors will still be
returned.

If you just want to ignore a particular error, then you can use the more
specific code and indicate the exact error to be ignored. For example, to
ignore the check for a space before the Act block, we can mark the Act block
with # noqa: AAA03:

def test():
 x = 1
 result = x + 1 # noqa: AAA03

 assert result == 2

Command line

Flake8-AAA has a simple command line interface to assist with development and
debugging. Its goal is to show the state of analysed test functions, which
lines are considered to be parts of which blocks and any errors that have been
found.

Invocation, output and return value

With Flake8-AAA installed, it can be called as a Python module:

$ python -m flake8_aaa [test_file]

Where [test_file] is the path to a file to be checked.

The return value of the execution is the number of errors found in the file,
for example:

$ python -m flake8_aaa test_example.py
------+--
 1 DEF|def test():
 2 ARR| x = 1
 3 ARR| y = 1
 ^ AAA03 expected 1 blank line before Act block, found none
 4 ACT| result = x + y
 5 BL |
 6 ASS| assert result == 2
------+--
 1 | ERROR
======+==
 FAILED with 1 ERROR
$ echo "$?"
1

And once the error above is fixed, the return value returns to zero:

$ python -m flake8_aaa test_example.py
------+--
 1 DEF|def test():
 2 ARR| x = 1
 3 ARR| y = 1
 4 BL |
 5 ACT| result = x + y
 6 BL |
 7 ASS| assert result == 2
------+--
 0 | ERRORS
======+==
 PASSED!
$ echo "$?"
0

Only one file can be passed to the command line at a time. So to test all files
in a test suite, find should be used:

$ find tests -name '*.py' | xargs -n 1 python -m flake8_aaa

noqa and command line

The # noqa comment marker works slightly differently when Flake8-AAA is
called on the command line rather than invoked through flake8. When called
on the command line, to skip linting a test function, mark the function
definition with # noqa on the same line as the def.

For example:

def test_to_be_ignored(# noqa
 arg_1,
 arg_2,
):
 ...

Line markers

Each test found in the passed file is displayed. Each line is annotated with
its line number in the file and a marker to show how Flake8-AAA classified that
line. Line markers are as follows:

	ACT

	Line is part of the Act Block.

	ARR

	Line is part of an Arrange Block.

	ASS

	Line is part of the Assert Block.

	BL

	Line is considered a blank line for layout purposes.

	CMT

	Line is a # comment.

	DEF

	Test function definition.

	???

	Unprocessed line. Flake8-AAA has not categorised this line.

Release checklist

The following tasks need to be completed for each release of Flake8-AAA. They
are mainly for the maintainer’s use.

Versioning

Given a new version called x.y.z:

	Create a branch for the new release. Usually called something like
bump-vx.y.z.

	Run ./bump_version.sh [x.y.z].

	Commit changes and push bump-vx.y.z branch for testing.

Documentation

Now is a good time to build and check the documentation locally:

$ make doc
$ firefox docs/_build/html/index.html

Ensure that command line output examples are up to date. They can be updated
using the output of the cmd and cmdbad tox environments.

Merge

	When branch bump-vx.y.z is green, then merge it to master.

	Update master locally and ensure that you remain on master for the rest of
the process.

Test PyPI

	Test that a build can be shipped to test PyPI with make testpypi.

	After successful push, check the TestPyPI page [https://test.pypi.org/project/flake8-aaa/].

Tag and push

	Tag the repo with make tag. Add a short message describing the key
feature of this release.

	Make the new tag public with git push origin --tags.

	Build and push to PyPI with make pypi.

	After successful push, check the PyPI page [https://pypi.org/project/flake8-aaa/].

Post release checks

	Visit the CHANGELOG [https://github.com/jamescooke/flake8-aaa/blob/master/CHANGELOG.rst]
and ensure that the new release’s comparison link works with the new tag.

	Check the RTD builds [https://readthedocs.org/projects/flake8-aaa/builds/] to ensure that the
latest documentation version has been picked up and that the stable docs
are pointed at it.

A new docs release will not have been created for the new tag as per this
issue [https://github.com/rtfd/readthedocs.org/issues/3508]. Click “Build
Version:” on the builds page for the new tag to be picked up.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Flake8-AAA documentation

 		
 Compatibility list

 		
 Python

 		
 Python 3.5

 		
 Python 2

 		
 Flake8

 		
 Yapf

 		
 Black

 		
 Pytest

 		
 Unittest

 		
 Test discovery and analysis

 		
 Filtering

 		
 Processing

 		
 Check for no-op

 		
 Mark blank lines

 		
 Mark comments

 		
 Find the Act block

 		
 Build Arrange and Assert blocks

 		
 Line-wise analysis

 		
 Rules and error codes

 		
 AAA01: no Act block found in test

 		
 Resolution

 		
 AAA02: multiple Act blocks found in test

 		
 Resolution

 		
 AAA03: expected 1 blank line before Act block, found none

 		
 Resolution

 		
 AAA04: expected 1 blank line before Assert block, found none

 		
 Resolution

 		
 AAA05: blank line in block

 		
 Resolution

 		
 AAA06: comment in Act block

 		
 Problematic code

 		
 Correct code

 		
 Rationale

 		
 Exceptions

 		
 AAA99: collision when marking this line as NEW_CODE, was already OLD_CODE

 		
 Resolution

 		
 Controlling Flake8-AAA

 		
 In code

 		
 Explicitly marking blocks

 		
 Disabling Flake8-AAA selectively

 		
 Command line

 		
 Invocation, output and return value

 		
 noqa and command line

 		
 Line markers

 		
 Release checklist

 		
 Versioning

 		
 Documentation

 		
 Merge

 		
 Test PyPI

 		
 Tag and push

 		
 Post release checks

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

